

    
      
          
            
  
PyFibreBundle

PyFibreBundle is a Python package for processing of images captured through optical fibre bundles.

The project is hosted on github [https://github.com/MikeHughesKent/PyFibreBundle/]. The latest stable release can be installed via pip:

pip install PyFibreBundle





The package supports fibre core pattern removal by filtering and triangular linear interpolation, background correction and
flat fielding, as well as automatic bundle location, cropping and masking. Both monochrome and colour images can be processed.
The PyBundle class is the preferred way to access this functionality,
but the lower level functions can also be used directly for greater customisation.
The Mosaic class provides mosaicing via normalised cross correlation,
and the SuperRes class allows multiple shifted images to be combined to improve resolution.

The package is designed to be fast enough for use in imaging GUIs as well as for offline research -
frame rates of over 100 fps can be achieved on mid-level hardware, including core removal and mosaicing.
The Numba just-in-time compiler is used to accelerate key portions of code (particularly triangular linear interpolation) and
OpenCV is used for fast mosaicing. If the Numba package is not installed then PyFibreBundle falls back on Python interpreted code.

PyFibreBundle is developed mainly by Mike Hughes [https://research.kent.ac.uk/applied-optics/hughes/]’s lab in the Applied Optics Group [https://research.kent.ac.uk/applied-optics], School of Physics and Astronomy, University of Kent. Bug reports, contributions and pull requests are welcome.
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Installation

There are several ways to get PyFibreBundle:


	Download the latest stable release [https://github.com/MikeHughesKent/PyFibreBundle/releases/latest] from github and unzip.  (The download link is at the bottom of the linked page.)




This will give you all the examples, tests and test data.


	Download the latest files from the Github repository [https://github.com/MikeHughesKent/PyFibreBundle] by clicking ‘Code’ and ‘Download ZIP’


	Clone the Github repository [https://github.com/MikeHughesKent/PyFibreBundle] using:

git clone https://github.com/MikeHughesKent/PyFibreBundle







	Install the latest stable release using:

pip install PyFibreBundle









Using pip install should find and install all the dependencies. For the other
options you will need to either manually check you have the requirements
installed, or navigate to the PyFibreBundle folder on your machine and run:

pip install -r requirements.txt





to install the dependencies. You may wish to create a virtual environment
using Conda/venv first to avoid conflicts with your existing python setup.

Note that the pip install doesn’t include the examples and tests which still
need to be downloaded from Github.

Once installed, you can try running the examples in the examples folder. The
examples assume they are being run from the working directory.


Dependencies


	matplotlib>=3.3.4


	numba>=0.55.1


	numpy>=1.18


	opencv_python>=4.5.2.54


	Pillow>=9.3.0


	scipy>=1.7.3








            

          

      

      

    

  

    
      
          
            
  
Basic Image Processing

PyFibreBundle includes functions for basic processing of bundle images,
including locating, cropping and masking the bundle and removing the core
pattern using spatial filtering or linear interpolation between cores. Both
monochrome and colour images are supported. Monochrome images are stored
as 2D numpy arrays and colour images are stored as 3D numpy arrays, with the
colour channels along the third axis (any number of colour channels is allowed).
Image types explicitly supported are uint8, uint16, float32 and float64.

The recommended way to use this functionality is via the
PyBundle class, but it is also possible to
use the low level functions directly.

Full examples are available on Github for spatial filtering [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/filtering_example.py]
and linear interpolation [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/linear_interp_example.py].


Getting Started

Begin by importing the PyBundle class:

from pybundle import PyBundle





We then instantiate a PyBundle object:

pyb = PyBundle()





Let’s assume we have an image stored in img, a 2D (monochrome) or 3D
(colour) numpy array. If the image is colour then the colour channels are along
the third axis.

In general, to process an image we use:

procImage = pyb.process(img)





However, this will do nothing to the raw image unless we first set some processing options, either by
passing optional arguments when creating the PyBundle object, or by calling setter methods on the object
after creation.



Filtering

First we define what type of core-removal we would like, for example for Gaussian filtering with
a sigma of 2.5, we pass:

pyb = PyBundle(coreMethod = PyBundle.FILTER, filterSize = 2.5)





or equivalently:

pyb = PyBundle()
pyb.set_core_method(PyBundle.FILTER)   # Choose to use a Gaussian filter
pyb.set_filter_size(2.5)               # Gaussian filter sigma is 2.5 pixels





If we then call:

procImage = pyb.process(img)





then procImage will be a Gaussian filtered version of img.

The other two options for core removal are PyBundle.TRILIN, for triangular linear
interpolation, and PyBundle.EDGE_FILTER to use a custom edge filter.

See the Linear Interpolation  page for details on
how to perform linear interpolation.

The edge filter is a spatial frequency domain filter that seeks to cut off
higher spatial frequencies includes those that correspond to the cores. It is used
similarly to the Gaussian filter, except that the
filter size is defined by passing edgeFilterSize = (pos, slope) or
calling:

set_edge_filter_size(pos, slope)





where pos the defines the position of the cut-off and slope defines
the steepness of the cut-off. pos should typically be around twice the
core spacing and slope around 10% of this.

As for the Gaussian filter, the best speed is achieved by setting a calibration
image and then calling calibrate(); the edge filter will be generated at
this point.



Background and Normalisation

We can provide images which will be used for background subtraction and
normalisation (flat-fielding). Essentially, an image provided as background
will be subtracted from the raw image to be processed, and the raw image
will be divided by the normalisation image (the exact implementation depends
on the core processing method).

If we have a background image in the numpy array backImg, then to set the
background image, pass background = backImg or call:

pyb.set_background(backimg)





To set a normalisation image stored in normImg, pass
normaliseImage = normImg or call:

pyb.set_normalise_image(normImg)





Existing backgrounds/normalisations can be cleared by passing None to these
functions.



Cropping

If we are using FILTER or EDGE_FILTER core removal methods, we might also want
to crop the image to the size of the bundle (this happens intrinsically for
TRILIN). Cropping can be set to happen automatically by passing crop = True
e.g.

pyb = PyBundle(coreMethod = PyBundle.FILTER, filterSize = 2.5, crop = True)





In this case, when process() is called, PyBundle will attempt to locate
the bundle and crop the image to a square just enclosing the bundle.

This is inefficient when processing multiple images from the same imaging
setup, as the bundle location routine will run each time we call process().
It is faster to determine the location once from a calibration image,
which is ideally an image with uniform illumination of the bundle
(although it could also be one of the images to be processed).

Set the calibratation image by passing
calibImage = calibImg or by calling:

pyb.set_calib_image(calibImg)





where calibImg is a 2D/3D numpy array containing the calibration image. The
calibration image should be the same size as the images to be processed.

Optionally, we can then call:

pyb.calibrate()





and PyBundle will calculate and store the location of the bundle. If
calibrate() is not called then the calibration image will still be used to
find the bundle for cropping when pyb.process() is called for the first time. The
bundle location will then be stored for future use.

Alternatively, we can explicitly tell PyBundle the location of the bundle
in advance, either by passing loc = location or by calling:

pyb.set_loc(location)





where location is a tuple of (centre_x, centre_y, radius).



Masking

If we are using FILTER or EDGE_FILTER core removal methods, we might also want
to set pixels outside the bundle to 0 (this happens intrinsically for
TRILIN). This masking can be set to happen automatically by passing
applyMask = True, e.g.

pyb = PyBundle(coreMethod = PyBundle.FILTER, filterSize = 2.5, applyMask = True)





As for cropping, PyBundle will generate a mask automatically each time we call
pyb.calibrate() on an image which is generally not efficient. Again, it often better to
generate the mask based on a calibration image in the same way as for cropping, i.e. by
passing calibImage = calibImg. Calling:

pyb.calibrate()





will then allow the mask to be generated in advance, otherwise it will
be created the first time we call pyb.process().



Image Type and Autocontrast

The default image output type is 'float64', this can be changed by passing, for
example outputType = 'uint8' when creating the PyBundle object, or by
calling

pyb.set_output_type('uint8')      # Output images will be 8 bit





where 'uint8', 'uint16', 'float32' or 'float64' can be used.
The output will simply be cast to this format without any scaling, unless we pass
autoContrast = True or set:

pyb.set_auto_contrast(True)





in which case the image will be first scaled to between 0 and 255 if an
8 bit output type is set, or between 0 and 65535 if a 16 bit output type is
set, or between 0 and 1 if a floating point output type is set.



Examples

Gaussian filtering: examples/filtering_example.py [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/filtering_example.py].

Linear interpolation: examples/linear_interp_example.py [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/linear_interp_example.py].

Colour Gaussian filtering: examples/filtering_colour_example.py [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/filtering_colour_example.py].

Colouor Linear interpolation: examples/linear_interp_colour_example.py [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/linear_interp_colour_example.py].





            

          

      

      

    

  

    
      
          
            
  
Linear Interpolation

Triangular linear interpolation can be used to remove the fibre bundle core pattern.
Using a calibration image, usually acquired with no object in view (i.e. a flat field),
the location of each core is determined. A Delaunay triangulation is performed over the core locations.
A reconstruction grid is then defined, and the enclosing triangle for each pixel is determined.
Images can then be processed by interpolating the value of each pixel from the brightness of the three surrounding cores.
Although calibration can take a few seconds, processing of images can then be at video rate.

There are examples for  monochrome [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/linear_interp_example.py] and colour [https://github.com/MikeHughesKent/PyFibreBundle/blob/main/examples/linear_interp_colour_example.py] images on Github.

Full details of all available options are listed on the PyBundle Class section.


Object Oriented Approach

Import the PyBundle class and instantiate an object:

from pybundle import PyBundle
pyb = PyBundle()





Set the core removal method to triangular linear interpolation:

pyb.set_core_method(pyb.TRILIN)





Set both the calibration and normalisation images to be calibImg, a 2D/3D numpy array:

pyb.set_calib_image(calibImg)
pyb.set_normalise_image(calibImg)





Choose the output images size:

pyb.set_grid_size(512)





If we are normalising it is best to get an output image which is auto-contrasted:

pyb.set_auto_contrast(True)





Alternatively, those options can all be set at instantiation:

pyb = PyBundle(coreMethod = PyBundle.TRILIN,
               calibImage = calibImg,
               normaliseImage = calibImg,
               gridSize = 512,
               autoContrast = True)





We then perform the calibration, which takes around a second:

pyb.calibrate()





To remove the fibre bundle pattern from an image img, a 2D/3D numpy array, we call:

imgProc = pyb.process(img)





For real-time processing, a speed-up of approx X4 in reconstruction can be obtained if the Numba package is installed. To disable use of Numba, call:

pyb.set_use_numba(False)







Lower level functions

For greater customisation, the static functions can be called directly. First perform a calibration using the calibration image calibImg, a 2D numpy array:

coreSize = 3
gridSize = 512
calib = pybundle.calib_tri_interp(calibImg, coreSize, gridSize, normalise = calibImg, automask = True)





Here we have specified coreSize = 3 which is the approximate core spacing in the image. This assists the calibration routine in finding all cores. If unknown it can be estimated using find_core_spacing.

The gridSize is the number of pixels in each dimensions of the reconstructed image, which is square.

Finally, we have specified to use the calibImg for normalisation. This means that the intensity extracted from each core during imaging will be normalised with respect to the intensity from the calibration image, removing effects due to non-uniform cores. If this is not done (i.e. normalise is left as the default None) then images may appear grainy.

To reconstruct an image img, a 2D/3D numpy array, we then call:

imgRecon = pybundle.recon_tri_interp(img, calib)





This returns a 2D numpy array of size (gridSize, gridSize) containing the image with the core pattern removed.

For all optional parameters refer to the functon reference for calib_tri_interp and recon_tri_interp.



Example

An example using OOP is in “examples\linear_interp_example.py”.

An example using OOP and showing the difference in speed if Numba is used is in “examples\linear_interp_numba_example.py”.

Linear interpolation is compared with other core method removal techniques in “examples\compare_recons.py”.





            

          

      

      

    

  

    
      
          
            
  
PyBundle class

The PyBundle class is the recommended way to use most functionality of the
package (other than Mosaicing which has its own class. All method are listed
below, introductory guides on using the class are available for for
Basic Processing, Linear Interpolation
and Super Resolution .


Instantiatation


	
PyBundle(optional arguments)

	



Creates a PyBundle object. There are a large number of optional keyword
arguments (.e.g autoLoc = True), which are listed below with their defaults
if not set. Each option also has a setter method (e.g. set_auto_loc) which
can be called after creating the object as an alternative to passing the
keyword arguement at creation. See the documentation for each setter, below,
for a detailed description of each option’s meaning.

GENERAL Settings:


	autoContrast = False (set_auto_contrast)


	background = None  (set_background)


	coreMethod = None (set_core_method)


	outputType = ‘float64’ (set_output_type)




CROP/MASK Settings:


	applyMask = False (set_apply_mask)


	autoMask = True (set_auto_mask)


	autoLoc = False (set_auto_loc)


	crop = False(set_crop)


	loc = None (set_loc)


	mask = None (set_mask)


	radius = None (set_radius)




CALIB/BACKGROUND/NORMALISATION Settings:


	calibImage = None (set_calib_image)


	backgroundImage = None (set_background)


	normaliseImage = none (set_normalise_image)




GAUSSIAN FILTER Settings:


	filterSize = None (set_filter_size)




EDGE_FILTER Settings:


	edgeFilterShape = None (set_edge_filter_shape)




LINEAR INTERPOLATION Settings:


	coreSize = 3 (set_core_size)


	gridSize  = 512 (set_grid_size)


	useNumba = True (set_use_numba)


	whiteBalance = False (set_white_balance)




SUPER RESOLUTION Settings:


	superRes = False (set_super_res)


	srShifts = None (set_sr_shifts)


	srCalibImages = None (set_sr_calib_images)


	srNormToBackgrounds = False (set_sr_norm_to_backgrounds)


	srNormToImages = True (set_sr_norm_to_images)


	srMultiBackgrounds = False (set_sr_multi_backgrounds)


	srMultiNormalisation = False (set_sr_multi_normalisation)


	srDarkFrame = None (set_sr_dark_frame)


	srUseLut = False (set_sr_use_lut)


	srParamValue = None (set_sr_param_value)






Methods


	
class pybundle.PyBundle(**kwargs)

	
	
calibrate()

	Peforms calibraion steps appropriate to chosen method. A calibration
image must have been set prior to calling this.

For TRILIN, creates interpolation calibration.

For FILTER, EDGE_FILTER, a filtered normalisation image is created.

For FILTER, EDGE_FILTER the bundle will be located if autoLoc has been set.

For FILTER, EDGE_FILTER the mask will be located if autoMask has been set.






	
calibrate_sr()

	Creates calibration for TRILIN SR method. A calibration image,
set of super-res shift images, coreSize and gridSize must have been
set prior to calling this.






	
calibrate_sr_lut(paramCalib, paramRange, nCalibrations)

	Creates calibration LUT for TRILIN SR method. A calibration image,
set of super-res shift images, coreSize and griSize must have been
set prior to calling this.


	Parameters:

	
	paramCalib – parameter shift calibration, as generated by calib_param_shift()


	paramRange – tuple of (min, max) defining range of parameter values to generate for


	nCalibration – int, number of parameter values to generate for













	
create_and_set_mask(img, **kwargs)

	Determine mask from provided calibration image and set as mask
Optionally provide a radius rather than using radius of determined
bundle location.


	Parameters:

	img – calibration image from which size of mask is determined



	Keyword Arguments:

	radius – radius of mask, default is to determine this automtically










	
get_pixel_scale()

	Returns the scaling factor between the pixel size in the raw image
and the pixel size in the processed image. If the TRILIN method is
selected, but a calibration has not yet been performed, returns None.






	
process(img)

	Process fibre bundle image using current settings.

Returns processed image as 2D/3D numpy array.


	Parameters:

	img – input image as 2D/3D numpy array










	
set_apply_mask(applyMask)

	Determines whether areas outside the bundle are set to zero
for FILTER and EDGE_FILTER method.


	Parameters:

	applyMask – boolean, True to apply mask, False to not apply mask










	
set_auto_contrast(ac)

	Determines whether images are scaled to be between 0-255.


	Parameters:

	ac – boolean, True to autocontrast










	
set_auto_loc(img)

	Sets whether the bundle is automatically located for cropping and masking,
if these are turned on, depending on boolean value passed.

It is also possible to pass an image as a 2D numpy array instead of a Boolean,
in which case the bundle location will be determined from this image. However,
this is noq deprecated in favour of setting calibImg and then calling calibrate.


	Parameters:

	img – boolean, True to auto-locate bundle, False to not.










	
set_auto_mask(img, **kwargs)

	Set whether to automically create mask using pre-determined bundle
location.

It is also possible to provide an image as a 2D numpy array, in which
case the mask will be generated of the correct size for this image, but
this is deprecated, use calibrate() instead. Optionally provide a
radius rather than using radius of determined bundle location.


	Parameters:

	img – boolean, True to automically create mask



	Keyword Arguments:

	radius – optional, int, overrides automically determined radius for
mask.










	
set_background(background)

	Store an image to be used as background. If TRILIN is being used and a
calibration has already been performed, the background will be added to the
calibration.


	Parameters:

	backgroundImage – background image as 2D/3D numpy array. Set as
None to remove background.










	
set_calib_image(calibImg)

	Set image to be used for calibration.


	Parameters:

	calibImg – calibration image as 2D/3D numpy array










	
set_core_method(coreMethod)

	Set the method to use to remove cores, FILTER, TRILIN or EDGE_FILTER


	Parameters:

	coreMethod – PyBundle.FILTER, PyBundle.TRILIN or PyBundle.EDGE_FILTER










	
set_core_size(coreSize)

	Set the estimated centre-centre core spacing used to help find
cores as part of TRILIN method.


	Parameters:

	coreSize – float, estimate core spacing










	
set_crop(crop)

	Determines whether images are cropped to size of bundle
for FILTER, EDGE_FILTER methods. crop is Boolean.


	Parameters:

	crop – boolean, True to crop










	
set_edge_filter_shape(edgePos, edgeSlope)

	Creates and stores filter for EDGE_FILTER method.


	Parameters:

	
	edgePos – float, spatial frequency of edge in pixels of FFT of image


	edgeSlope – float, steepness of slope (range from 10% to 90%) in pixels of FFT of image













	
set_filter_size(filterSize)

	Set the size of Gaussian filter used if filtering method employed.


	Parameters:

	filterSize – float, sigma of Gaussian filter










	
set_grid_size(gridSize)

	Sets output image size if TRLIN method used. If not called prior
to calling ‘calibrate’, the default value of 512 will be used.


	Parameters:

	gridSize – int, size of square image output










	
set_loc(loc)

	Store the location of the bundle. This will also set autoLoc = False.


	Parameters:

	loc – bundle location, tuple of (centreX, centreY, radius)










	
set_mask(mask)

	Provide a mask to be used. Mask must be a 2D numpy array of same
size as images to be processed


	Parameters:

	mask – 2D numpy array, 1 inside bundle, 0 inside bundle. Must be
same size as image to be processed.










	
set_normalise_image(normaliseImage)

	Store an image to be used for normalisation. If TRILIN is being used and a
calibration has already been performed, the normalisation will be added to the
calibration.


	Parameters:

	normaliseImage – normalisation image as 2D/3D numpy array. Set as
None to remove normalisation.










	
set_output_type(outputType)

	Specify the data type of input images returned from ‘process’.
Returns False if type not valid.


	Parameters:

	outputType – str, one of ‘uint8’, ‘unit16’ or ‘float’










	
set_radius(radius)

	Sets the radius of the bundle in the image. This will override
any automically determined value.


	Parameters:

	radius – int, bundle radius










	
set_sr_backgrounds(backgrounds)

	Provide a set of background images for background correction of
each SR shifted image.


	Parameters:

	backgrounds – 3D numpy array, stack of background images










	
set_sr_calib_images(calibImages)

	Provides the calibration images, a stack of shifted images used to
determine shifts between images for super-resolution


	Parameters:

	calibImages – 3D numpy array, stack of shifted images.










	
set_sr_dark_frame(darkFrame)

	Provide a dark frame for super-resolution calibration.


	Parameters:

	darkFrame – 2D numpy array, dark frame










	
set_sr_multi_backgrounds(mb)

	Sets whether super-resolution should use individual backgrounds for each
each shifted image.


	Parameters:

	mb – boolean, True to use multiple backgrounds, False to not










	
set_sr_multi_normalisation(mn)

	Sets whether super-resolution should normalise to each core in each image


	Parameters:

	mn – boolean, True to normalise each core in each image, False to not










	
set_sr_norm_to_backgrounds(normToBackgrounds)

	Sets whether super-resolution recon should normalise each input
image w.r.t. a stack of backgrounds in srBackgrounds to have the same
mean intensity.


	Parameters:

	normToBackgrounds – boolean, True to normalise, False to not










	
set_sr_norm_to_images(normToImages)

	Sets whether super-resolution recon should normalise each input
image to have the same mean intensity.


	Parameters:

	normToImages – boolean, True to normalise, False to not










	
set_sr_normalisation_images(normalisationImages)

	Provide a set of normalisation images for normalising intensity of
each SR shifted image.


	Parameters:

	normalisationImages – 3D numpy array, stack of images










	
set_sr_param_value(val)

	Sets the current value of the parameter on which the shifts
dependent for SR reconstruction.


	Parameters:

	val – parameter value










	
set_sr_shifts(shifts)

	Provide shifts between SR images. If this is set then no registration
will be performed.


	Parameters:

	shifts – 2D numpy array, shifts for each image relative to first
image. 1st axis is image number, 2nd axis is (x,y)










	
set_sr_use_lut(useLUT)

	Enables or disables use of calibration LUT for super resoution.


	Parameters:

	useLUT – boolean, True to use calibration LUT.










	
set_super_res(sr)

	Enables or disables super resolution.


	Parameters:

	sr – boolean, True to use super-resolution.










	
set_use_numba(useNumba)

	Sets whether Numba should be used for JIT compiler acceleration for
functionality which supports this.


	Parameters:

	useNumba – boolean, True to use Numba, False to not.










	
set_white_balance(whiteBalance)

	Sets whether each colour channel should be normalised independently
when using linear interpolation method.


	Parameters:

	whiteBalance – boolean, each channel normalised independently if True (default is False).

















            

          

      

      

    

  

    
      
          
            
  
Mosaicing

The Mosaic class allows high speed mosaicing using normalised cross correlation to detect shifts between image frames,
and either dead-leaf or alpha-blended insertion of images into a mosaic.
The easiest way to use this functionality is to create an instance of Mosaic class and then use Mosaic.add(img) to
sequentially register and add image img to the mosaic,       and Mosaic.getMosaic() to get the latest mosaic image.
Both img and the mosaic are 2D (monochrome) or 3D (colour) numpy arrays.

An example is provided on Github.


Getting Started

Instantiate an object of the Mosaic class using default options and with a mosaic image size of 1000x1000:

from pybundle import Mosaic
mMosaic = Mosaic(1000)





Add an image img to the mosaic:

mMosaic.add(img)





Request the latest mosaic image:

mosaicImage = mMosaic.getMosaic()





The mosaicImage will be a 2D numpy array if img is 2D and a 3D numpy array if img is 3D, in which case the third axis represents the colour channels.



Methods


	
class pybundle.Mosaic(mosaicSize, **kwargs)

	The Mosaic class is used for producing mosaics from a sequence of
images. After instantiating a Mosaic object, use add() to add in images
and get_mosaic to obtain the current mosaic image.


	Parameters:

	mosaicSize – int, square size of mosaic image



	Keyword Arguments:

	
	resize – int, images will be resized to a square this size,
default is None meaning no resize.


	templateSize – int, size of square to extract to use as template
for shift detection. Default is 1/4 image size.


	refSize – int, size of square to extract to use as image
to compare template to for shift detection.
Default is 1/2 image size.


	cropSize – int, input images are cropped to a circle of this
diameter before insertion. (default is
0.9 x size of first image added)


	imageType – str, data type for mosaic, default is the same
as first image added


	blend – boolean, if True (default), images will be added blended,
otherwise they are added dead-leaf


	blendDist – int, distance in pixels from edge of inserted
image to blend with mosaic, default is 40


	minDistforAdd – int, minimum distance moved before an image
will be added to the mosaic, default is 25


	initialX – int, starting positon of mosaic, default is centre


	initialY – int, starting positon of mosaic, default is centre


	boundaryMethod – method to deal with reaching edge: CROP, SCROLL or
EXPAND, default is CROP


	expandStep – int, amount to expand by if EXPAND boundaryMethod
is used


	resetThresh – float, mosaic will reset if correlation peak is
below this, default is None (ignore)


	resetIntensity – float, mosaic will reset if mean image value is
below this value, default is None (ignore)


	resetSharpness – float, mosaic will reset if image sharpness (mean
of gradient) drops below this value, default is None (ignore)









	
add(img)

	Add image to current mosaic.


	Parameters:

	img – image as 2D/3D numpy array










	
get_mosaic()

	Returns current mosaic image as 2D/3D numpy array






	
reset()

	Call to reset mosaic, clearing image. The mosaic will only
be fully reset once a new image is added. Note that parameters that
were already initialised will not be reset.











Usage Notes

The only required argument is the size of the mosaic image. By default images will be added blended, there will be no resize of the input image, no checking of input image quality and if the mosaic reaches the edge of the image it will simple run off the the edge.

Usually it is beneficial to resize the input images to prevent the need for a very large mosaic image, e.g.:

mMosaic = Mosaic(1000, resize = 250)





The reset methods (resetThresh, resetIntensity and resetSharpness) are normally required when used with a handheld probe to handle instances where tissue contact is lost or the probe is moved too quickly. For optical sectioning endomicroscope, a combination of correlation based thresholding (resetThresh) and intensity based thresholding (resetIntensity) works well. For non-sectioning endomicroscopes, moving out of focus does not sufficiently reduce either, and so it may be necessary to use sharpness thresholding (resetSharpness) as well. The best values to use must be determined empirically and will depend on pre-processing steps.

For slow moving probes, minDistForAdd may need to be adjusted particularly when using blending to prevent undesirable effects of the same image being blended with itself.



Low Level Functions

The private member functions of the Mosaic class are listed below for custom use:


	
class pybundle.Mosaic(mosaicSize, **kwargs)

	The Mosaic class is used for producing mosaics from a sequence of
images. After instantiating a Mosaic object, use add() to add in images
and get_mosaic to obtain the current mosaic image.


	Parameters:

	mosaicSize – int, square size of mosaic image



	Keyword Arguments:

	
	resize – int, images will be resized to a square this size,
default is None meaning no resize.


	templateSize – int, size of square to extract to use as template
for shift detection. Default is 1/4 image size.


	refSize – int, size of square to extract to use as image
to compare template to for shift detection.
Default is 1/2 image size.


	cropSize – int, input images are cropped to a circle of this
diameter before insertion. (default is
0.9 x size of first image added)


	imageType – str, data type for mosaic, default is the same
as first image added


	blend – boolean, if True (default), images will be added blended,
otherwise they are added dead-leaf


	blendDist – int, distance in pixels from edge of inserted
image to blend with mosaic, default is 40


	minDistforAdd – int, minimum distance moved before an image
will be added to the mosaic, default is 25


	initialX – int, starting positon of mosaic, default is centre


	initialY – int, starting positon of mosaic, default is centre


	boundaryMethod – method to deal with reaching edge: CROP, SCROLL or
EXPAND, default is CROP


	expandStep – int, amount to expand by if EXPAND boundaryMethod
is used


	resetThresh – float, mosaic will reset if correlation peak is
below this, default is None (ignore)


	resetIntensity – float, mosaic will reset if mean image value is
below this value, default is None (ignore)


	resetSharpness – float, mosaic will reset if image sharpness (mean
of gradient) drops below this value, default is None (ignore)









	
__cosine_window(circleSize, circleSmooth)

	Produce a circular cosine window mask on grid of imgSize * imgSize. Mask
is 0 for radius > circleSize and 1 for radius < (circleSize - circleSmooth).
The intermediate region is a smooth cosine function.

Returns mask as 2D numpy array.


	Parameters:

	
	imgSize – int, size of square mask to generate


	circleSize – int, radius of mask (mask pixels outside here are 0)


	circleSmooth – int, size of smoothing region at the inside edge of the circle.
(mask pixels with a radius less than this are 1)













	
__expand_mosaic(distance, direction, currentX, currentY)

	Increase size of mosaic image by ‘distance’ in direction ‘direction’. Supply
currentX and currentY position so that these can be modified to be correct
for new mosaic size.

Returns tuple of (newMosaic, width, height, newX, newY), where newMosaic
is the larger mosaic image as 2D numpy array, width is the x-size of
the new mosaic, height is the y-size of the new mosaic, newX is the x
position of the last image insertion in the new mosaic, newY is the y
position of the last image insertion in the new mosaic.


	Parameters:

	
	mosaic – input mosaic image as 2D numpy array


	distance – pixels to expand by


	direction – side to expand, one of Mosaic.Top, Mosaic.Bottom,
Mosaic.Left or Mosaic.Right


	currentX – x position of last image insertion into mosaic


	currentY – y position of last image insertion into mosaic













	
__find_shift(img2, templateSize, refSize)

	Calculates how far img2 has shifted relative to img1 using
normalised cross correlation.

Returns tuple of (shift, max_val) where shift is a tuple of (x_shift, y_shift) and
max_val is the normalised cross correlation peak value. Returns None if the shift
cannot be calculated.


	Parameters:

	
	img1 – reference image as 2D/3D numpy array


	img2 – template image as 2D/3D numpy array


	templateSize – int, a square of this size is extracted from img as
the template


	refSize – int, a square of this size is extracted from refSize
as the template.
Must be bigger than templateSize and the maximum
shift detectable is (refSize - templateSize)/2













	
__initialise_mosaic(img)

	Choose sensible values for non-specified parameters.


	Parameters:

	img – input image to used to choose sensible parameters for
mosaicing, 2D/3D numpy array










	
__insert_into_mosaic(img, mask, position)

	Dead leaf insertion of image into a mosaic at specified position.
Only pixels for which mask == 1 are copied.


	Parameters:

	
	mosaic – current mosaic image, 2D/3D numpy array


	img – img to insert, 2D/3D numpy array


	mask – 2D numpy array with values of 1 for pixels to be copied
and 0 for pixels not to be copied. Must be same size as img.


	position – position of insertion as tuple of (x,y). This is the
pixel the centre of the image will be at.













	
__insert_into_mosaic_blended(img, mask, blendMask, cropSize, blendDist, position)

	Insertion of image into a mosaic with cosine window blending. Only pixels from
image for which mask == 1 are copied. Pixels within blendDist of edge of mosaic
(i.e. radius of cropSize/2) are blended with existing mosaic pixel values


	Parameters:

	
	mosaic – current mosaic image, 2D/3D numpy array


	img – img to insert, 2D/3D numpy array


	mask – 2D numpy array with values of 1 for pixels to be copied
and 0 for pixels not to be copied. Must be same size as img.


	blendMask – the cosine window blending mask with weighted pixel values. If passed empty []
this will be created


	cropSize – size of input image.


	blendDist – number which controls the sptial extent of the blending


	position – position of insertion as tuple of (x,y). This is the
pixel the centre of the image will be at.













	
__is_outside_mosaic(img, position)

	Checks if position of image to insert into mosaic will result in
part of inserted image being outside of mosaic. Returns tuple of
boolean (true if outside), side it leaves (using consts defined above)
and distance is has strayed over the edge. e.g. (True, Mosaic.Top, 20).

Returns tuple of (ouside, side, distance), where outside is True if
part of image, side is (one of the) side(s) it has strayed out of,
one of Mosaic.Top, Mosaic.Bottom, Mosaic.Left or Mosaic.Right or -1 if
outside == False, distance is distance it has strayed outside mosaic in
the direction specified in size (0 if outside == False).


	Parameters:

	
	mosaic – mosaic image (strictly can be any numpy array the same size as the mosaic)


	img – image to be inserted as 2D numpy array


	position – position of insertion as tuple of (x,y). This is the
pixel the centre of the image will be at.













	
__scroll_mosaic(distance, direction, currentX, currentY)

	Scroll mosaic to allow mosaicing to continue past edge of mosaic. Pixel
values will be lost. Supply currentX and currentY position so that these
can be modified to be correct for new mosaic size.

Return: tuple of (newMosaic, width, height, newX, newY), where
newMosaic is the larger mosaic image as 2D numpy array, width is the
x-size of the new mosaic, height is the y-size of the new mosaic, newX
is the x position of the last image insertion in the new mosaic, newY
is the y position of the last image insertion in the new mosaic.


	Parameters:

	
	mosaic – input mosaic image as 2D numpy array


	distance – pixels to expand by


	direction – side to expand, one of Mosaic.Top, Mosaic.Bottom,
Mosaic.Left or Mosaic.Right


	currentX – x position of last image insertion into mosaic


	currentY – y position of last image insertion into mosaic


















Example

An example is provided in “examples\mosaicing_example.py”





            

          

      

      

    

  

    
      
          
            
  
Super Resolution

Core super-resolution (i.e. overcoming the sampling limit of the fibre bundle) can be achieved by combining
multiple images, with the object slightly shifted with respect to the fibre pattern. The super-resolution
sub-package of PyFibreBundle provides the ability to combine multiple images and generate an enhanced resolution
using triangular linear interpolation. As with single image triangular linear interpolation, calibation takes
several seconds, but reconstruction is fast. For most applications this functionality is best accessed via the
PyBundle class as shown below. This functionality is currently only available for
monochrome images.


Getting Started

Import pybundle and instantiate a PyBundle object:

from pybundle import PyBundle
pyb = PyBundle()





To use super-resolution we must use the TRILIN processing method and choose the output image size:

pyb.set_core_method(pyb.TRILIN)
pyb.set_grid_size(512)





Then enable super-resolution:

pyb.set_super_res(True)





As for non-super-resolution TRILIN, we provide a calibration image, a uniformly illuminated image (2D numpy array) used to identify core locations:

pyb.set_calib_image(calibImage)





We can also set a background image (2D numpy array) which will be used for core-by-core background subtraction, this may be the same as calibImage:

pyb.set_background(backgroundImg)





A normalisation image (2D numpy array) for core-by-core normalisation is set using:

pyb.set_normalise_image(calibImg)





We also need to provide a set of calibration images from which the shifts can be determined. These can be the same
as the images we wish to use to create a super-resolution image from, or a set of image that we know have the same shifts. The calibration
images are provided as a 3D numpy array, with image number along the third axis:

pyb.set_sr_calib_images(srCalibImages)





We then perform the calibration, this may take several seconds:

pyb.calibrate_sr()





We can then generate a super-resolution image from a stack of shifted input images, again a 3D numpy array. This may be the same as srCalibImages or, if the shifts are reproducible, we can re-use the calibration for different stacks of images.:

srImage = pyb.process(inputImages)







Using Known Shifts

If the x and y shifts between images are known in advance, they can be specified using:

pyb.set_sr_shifits(shifts)





where shifts is a 2D numpy array of size (nImages, 2). When pyb.calibrate_sr() is called, these shifts will be used instead of calculating shifts, i.e. pyb.set_sr_calib_images() does not need to be called.



Correcting for Intensity Difference Between Images

If the shifted images are created simply by moving the bundle or the object, then the above method using only a
single background/normalisation image is all that is requried. If the shifted images have different intensities
(e.g. they are created from different light sources) then any global intensity differences must be
corrected to avoid image artefacts. A simple way to correct this is by multiplying each shifts images by an intensity
correction factor such that all the shifted images in such a way that multipying all the corresponding
calibration images by the same set of factors would results in them all having the same mean intensity.
This happens by default and can be explicitly turned on or off using:

pyb.set_sr_norm_to_images(True)





or:

pyb.set_sr_norm_to_images(False)





Alternatively, if a set of background images with the same relative mean intensities is available, these can be used
to determine the required correction by setting:

pyb.set_sr_backgrounds(backgroundImgs)
pyb.set_sr_norm_to_backgrounds(True)





where backgroundImgs is a 3D numpy array of (height, width, num images) containing the set of background images.

Note that this ‘normalisation’ is correcting for global differences in the intensity of each of the shfited images and
is distinct from the core-by-core normaliation of the TRILIN method which corrects for core-to-core variations.

These options must be set prior to calibration.



Using Background/Normalisation Stack

If each shifted image requires a different core-by-core background subtraction and/or normalisation, this can be specified:

pyb.set_sr_multi_backgrounds(True)
pyb.set_sr_backgrounds(backgroundImgs)

pyb.set_sr_multi_normalisation(True)
pyb.set_sr_normalisation_images(normalisationImgs)





In this case, a different TRILIN normalisation/background correction is applied to each shifted image independently.
If multi-normalisation is used, this overrides set_sr_norm_to_backgrounds or set_sr_norm_to_images since it will inherently ensure that
each image is corrected to be of the same mean intensity. This may offer an improvement over correcting on the basis of the mean background image intensities (i.e. using pyb.set_norm_to_backgrounds)
in cases where the coupling efficiency of individual cores varies across the set of shifted images.

These options must be set prior to calibration.



Using Lower Level Functions

First, perform the calibration. This requires a flat-field/background image calibImg (a 2D numpy array), a stack of shifted images imgs (a 3D numpy array - [x,y,n]), an estimate of the core spacing core size, and the output image size gridSize

calib = SuperRes.calib_multi_tri_interp(calibImg, imgs, coreSize, gridSize, normalise = calibImg)





We have also specified an optional parameter, a normalisation image calibImg, which prevents the images becoming grainy due to core-core variations. Note that imgs does not need to be the actual images to be used for reconstruction, but they must have the same relative shift as the the images. Alternatively, if the shifts are known, these can be specified using the optional parameter shifts which should be a 2D numpy array of the form (x_shift, y_shift, image_number). If shifts is specified then imgs can be None.

We then perform the super-resolution reconstruction using:

reconImg = SuperRes.recon_multi_tri_interp(imgs, calib)





which returns reconImg a 2D numpy array representing the output image.

Additional options are described below.



Parameterised Shifts

In some circumstances, the shifts between the images in the stack are fixed in time but are linearly dependent on some other parameter.
For example, in fibre bundle inline holographic microscopy, which uses multiple light sources in a transmission geometry,
the shifts of the hologram (image) position on the bundle depend on the distance between the object and the
bundle. In these cases it can be convenient to determine the dependence of the shifts on this parameter in a calibrations stage, and then to
subsequently infer the shifts for all further sets of images based on the current value of the parameter rather than measuring them directl from the images.

Assuming we have acquired several stacks of shifted images for different values of the parameter,
we assemble a 4D numpy array of images with dimensions (image height, image width, number of shifts, number of example param values).

We then call:

paramCalib = calib_param_shift(param, images, calibration)





where calibration is a single image linear interpolation calibration such as returned from calib_tri_interp or the one stored
in PyBundle.calibration after calling PyBundle.calibrate. param is a 1D numpy array specifying the values of the parameter
for each stack of shifted images.

The calibration is used to reconstruct each image in the stack. The x and y-components of the shifts of the nth shifted image
from each stack of shifted images (i.e. across all example values of the parameter) are then fitted to the values of the parameter with
a 1st order polynomial. The function returns paramCalib which provides the gradient and offset of the shift for each image
in the stack of shifted images.

To calculate the expected shifts for a stack of shifted images for a specific value of the parameter, we then call:

shifts = get_param_shift(param, paramCalib)





Where param is the value of the parameter we wish to know the shifts for, and paramCalib is the calibration returned by calib_param_shift.



Calibration Look-up-table

In cases where the shifts between the images change in some linear way with some parameter, as discussed in detail above, it may be desirable
to reconstruct resolution-enhanced images for multiple values of the parameter. For example, in inline bundle holographic microscopy, the
shifts depend on the distance to the object which may change in time. A different value for the shifts requires a new SR calibration,
since the calibration requires knowledge of the shifts. However, this calibration is too slow to be performed in real-time. It is therefore
advantageous to compute different calibrations for different values of the parameter, store these in a look-up table (LUT), and then at run-time
to use the calibration stored for the nearest value of the parameter.

To generate a LUT when using the PyBundle class, call:

PyBundle.calibrate_sr_LUT(self, paramCalib, paramRange, nCalibrations)





Here, paramRange is a tuple of (min, max) values of the parameter to generate the LUT for, and nCalibrations is the number of
values of the parameter within this range to create calibrations for.
Since each calibration takes typically several seconds to perform, large values of nCalibrations will take a long time to compute.

Prior to calling calibrate_sr_LUT, a single image calibration must already have been created using pyb.calibrate.
We must also provide a parameter calibration paramCalib, which tells us how the image shifts are related to the value of the parameter,
either created manually or using the output of calib_param_shift.

We then tell PyBundle to use the LUT:

PyBundle.set_use_sr_lut(True)





We must also tell PyBundle the current value of the parameter:

PyBundle.set_sr_param(paramValue)





Now, when we call PyBundle.process, assuming we have enabled super-resolution and provided a set of shifted images, as described above,
the calibration LUT will be accessed and the calibration previously created for a value of the parameter closest to the current value will be used.
This look up is much faster (by several orders of magnitude) then performing a new calibration.

Alternatively, if lower-level control is needed, an instance of the CalibrationLUT can be created directly:

lut = CalibrationLUT(calibImg, imgs, coreSize, gridSize, paramCalib, paramRange, nCalibrations, [optional arguments])





Parameters (including optional parameters) are as for calib_multi_tri_interp, with the addition of paramCalib, which is the return
from calling  calib_param_shift and stores the mapping between the parameter and the shifts, paramRange which is a tuple of (min, max)
values of the parameter to generate the LUT for, and nCalibrations which is the number of values of the parameter within this range to
create calibrations for.

Once the LUT is generated, we can extract the best calibration for the current value of the parameter using:

calibrationSR = lut.calibrationSR(paramValue)





SR reconstructions can then be performed using:

reconImage = recon.multi_tri_interp(imageStack, calibrationSR)







Function Reference

These are the low level functions, for most purposes it is better to use an instance of the PyBundle class.


High Level


	
pybundle.SuperRes.calib_multi_tri_interp(calibImg, imgs, coreSize, gridSize, **kwargs)

	Calibration step for super-resolution reconstruction. Either specify the
known shifts between images, or provide an example set of images
which the shifts will be calculated from.

Returns instance of BundleCalibration.


	Parameters:

	
	calibImg – calibration image of fibre bundle, 2D numpy array


	imgs – example set of images with the same set of mutual shifts as the images to
later be used to recover an enhanced resolution image from. 3D numpy array.
Can be None if ‘shifts’ is specified instead.


	coreSize – float, estimate of average spacing between cores


	gridSize – int, output size of image, supply a single value, image will be square






	Keyword Arguments:

	
	normalise – image used for normalisation, as 2D numpy array. Can be same as calibration image, defaults to no normalisation


	background – image used for background subtraction, as 2D numpy array, defaults to no background


	shifts – known x and y shifts between images as 2D numpy array of size (numImages,2).
Will override doing registration of ‘imgs’ if specified as anything other than None.


	centreX – int, x centre location of bundle, if not specified will be determined automatically


	centreY – int, y centre location of bundle, if not specified will be determined automatically


	radius – int, radius of bundle, if not specified will be determined automatically


	filterSize – float, sigma of Gaussian filter applied when finding cores, defaults to no filter


	normToImage – boolean, if True each image will be normalised to have the same mean intensity. Defaults to False.


	normToBackground – optional, if true, each image will be normalised with respect to the corresponding
background image from a stack of background images (one for each shift position) provided in backgroundImgs.
Defaults to False.


	backgroundImgs – stack of images, same size as imgs which are used to normalise or for image by image background subtraction. Defaults to None.


	multiBackgrounds – boolean, if True and backgroundImgs is defined, each image will have its own background image subtracted rather than using backgroundImg


	imageScaleFactor – If normToBackground and normToImage are False (default), use this to specify the normalisation factors for each image. Provide a 1D array the same size as the number of shifted images. Each image will be multiplied by the corresponding factor prior to reconstruction. Default is None (i.e. no scaling).


	autoMask – boolean, mask pixels outside bundle when searching for cores. Defualts to True.


	mask – : boolean, when reconstructing output image will be masked outside of bundle. Defaults to True













	
pybundle.SuperRes.recon_multi_tri_interp(imgs, calib, numba=True)

	Reconstruct image with super-resolution from set of shifted image.
Requires calibration to have been performed and stored in ‘calib’ as
instance of BundleCalibration.

Returns reconstructed image as 2D numpy array


	Parameters:

	
	imgs – set of shifted images


	calib – calibration, instance of BundleCalibration (must be
created by calib_multi_tri_interp and not calib_tri_interp).






	Keyword Arguments:

	numba – boolean, if True Numba JIT will be used (default).










	
pybundle.SuperRes.multi_tri_backgrounds(calibIn, backgrounds)

	Updates a multi_tri calibration with a new set of backgrounds without requiring
full recalibration.

Returns instance of BundleCalibration.


	Parameters:

	
	calibIn – bundle calibration, instance of BundleCalibration


	background – background image as 2D numpy array














Registration


	
pybundle.SuperRes.get_shifts(imgs, templateSize=None, refSize=None, upsample=2, **kwargs)

	Determines the shift of each image in a stack w.r.t. first image

Return shifts as 2D numpy array.


	Parameters:

	imgs – stack of images as 3D numpy array



	Keyword Arguments:

	
	templateSize – int, a square of this size is extracted from imgs
as the template, default is 1/4 image size


	refSize – int, a square of this size is extracted from first
image as the reference image, default is 1/2 image
size. Must be bigger than
templateSize and the maximum shift detectable is
(refSize - templateSize)/2


	upSample – upsampling factor for images before shift detection
for sub-pixel accuracy, default is 2.













	
pybundle.SuperRes.find_shift(img1, img2, templateSize, refSize, upsample, returnMax=False)

	Determines shift between two images by Normalised Cross
Correlation (NCC). A square template extracted from the centre of img2
is compared with a square region extracted from the reference image
img1. The size of the template (templateSize) must be less than the
size of the reference (refSize). The maximum detectable shift is
(refSize - templateSize) / 2.

If returnMax is False, returns shift as a tuple of (x_shift, y_shift).
If returnMax is True, returns tuple of (shift, cc. peak value).


	Parameters:

	
	img1 – image as 2D numpy array


	img2 – image as 2D numpy array


	templateSize – int, size of square region of img2 to use as template.


	refSize – int, size of square region of img1 to template match with


	upsample – int, factor to scale images by prior to template matching to
allow for sub-pixel registration.






	Keyword Arguments:

	returnMax – boolean, if true returns cc.peak value as well
as shift, default is False.











Parameterisation


	
pybundle.SuperRes.calib_param_shift(param, images, calibration)

	For use when the shifts between the images are linearly dependent on some other parameter.
Provide a TRILIN calibration and a 4D stack of images of (x, y, shift, parameter), i.e. an extra
dimension to provide examples of shifts for different values of the parameter. The values of the parameter
corresponding to each set of images is provided in param, i.e. the fourth dimension of images should be
the same length as param.

Returns a 3D array of calibration factors, giving the gradient and offset of x and y shifts of each image with respect to the parameter.






	
pybundle.SuperRes.get_param_shift(param, calib)

	For use when the shifts between the images are linearly dependent on some other parameter.
Assuming a prior calibration using calib_param_shift in ‘calib’, this function returns the
current value of the parameter to obtain the image shifts.






	
pybundle.SuperRes.param_calib_multi_tri_interp(calibImg, imgs, coreSize, gridSize, shiftsSet, **kwargs)

	Performs the calibration step for super-resolution reconstruction multiple times
for a set of different shifts. All other parameters are the same as for calib_multi_tri_interp.







Utility


	
pybundle.SuperRes.sort_sr_stack(stack, stackLength)

	Takes a stack of images and extracts an ordered set
of images relative to a reference ‘blank’ frame which is much lower intensity than
the other frames.

The blank frame can be anywhere in the stack, and the output stack will be formed cyclically
from frames before and after the blank frame. For example, if we have frames:

1  2  3  B  4  5

where B is the blank frame, the function will return a stack in the following order:

4  5  1  2  3

The input stack, ‘stack’ should should have (stackLength + 1)  frames to ensure that a
and there must be stackLength + 1 images in each cycle
(i.e. stackLength useful images plus one blank reference image).
The blank reference image is not returned, i.e the returned stack has stackLength frames.

Input stack should have frame number in third dimension.


	Parameters:

	
	stack – 3D numpy array (y,x, image_number)


	stackLength – number of image after blank frame















Implementation Details

calib_multi_tri_interp first calls calib_tri_interp to perform the standard calibration for triangular linear interpolation. This obtains the core locations, using find_cores. If the optional parameters normToImage or normToBackground are set to True, then the mean image intensity for ether the images stack or the background stack (supplied as a further optional parameter backgroundImgs) are calculated and stored. These are then later used to normalise each of the input images to a constant mean intensity. This is important for applications where the illumination intensity will be different for each image, but in most applications would not be needed. It is also possible to provide a 1D array of normalisation factors directly as the imageScaleFactor parameter.

calib_multi_tri_interp then calculates the relative shifts between the supplied images in imgs using get_shifts via normalised cross correlation. Alternatively, shifts can be provided via the optional parameter shifts. For each image, the recorded core positions are then translated by the measured shifts, and a single list of shifted core positions is assembled, containing the shifted core positions from all the images. init_tri_interp is then called, which forms a Delaunay triangulation over this set of core positions. For each pixel in the reconstruction grid the enclosing triangle is identified and the pixel location in barycentric co-ordinates is recorded.

Reconstruction is performed using recon_multi_tri_interp.  The intensity value from each core in each of the images are extracted, and then pixel values in the final image are interpolated linearly from the three surrounding (shifted) cores, using the pre-calculated barycentric distance weights.

The SR calibration is stored in an instane of BundleCalibration. This is an extension of the regular TRILIN calibration, and so this super-resolution calibration can be used for non-super-resolution reconstructions (but not vice-versa).



Examples

Examples are provided in “examples\super_res_example” for use via PyBundle class, and “examples\super_res_example_low_level.py” for calling lower-level functions directly.





            

          

      

      

    

  

    
      
          
            
  
Using the Low-Level Functions

While the PyBundle class is the recommended way to use most functinality.
the lower-level functions can be called directly if greater control is needed.

The fuctions are documented fully in the Function Reference.

Begin by importing the package:

import pybundle





To locate the bundle in an image, we use:

loc = pybundle.find_bundle(img)





This works best for background or structureless images acquired through a
bundle. The function returns loc which is a tuple of the
(x_centre, y _entre, radius).

If we would like to mask out pixels outside of the image, we can use:

maskedImg = pybundle.auto_mask(img)





Alternatively, we can generate a mask using:

mask = pybundle.get_mask(img, loc)





and apply this mask to any future image using:

maskedImg = pybundle.apply_mask(img, mask)





This is more useful in general, since the location of the bundle is best
determined using a calibration image, and the same mask can then be used for
all subsequent images.

We can also crop the image to a square around the bundle using:

croppedImg, newloc = pybundle.crop_rect(img, loc)





where we have specified the bundle location loc, a tuple of
(x_centre, y_centre, radius) as output by find_bundle. Note that the
output is a tuple of (image, newloc) where newloc is the new location
of the bundle in the cropped image.

To crop and mask an image in a single step use:

croppedImg = pybundle.auto_mask_crop(img)





Spatial filtering can be used to remove the core pattern (alternatively,
linear interpolation is also available). To apply a Gaussian smoothing filter,
use:

smoothedImg = pubundle.g_filter(img, filterSize)





where filterSize is the sigma of the 2D Gaussian smoothing kernel. A
convenient function to filter, mask and crop an image is given by:

smoothedImg = pybundle.crop_filter_mask(img, loc, mask)





where loc is the location of the bundle, determined using find_bundle
on a calibraton image, and mask is a mask created by get_mask.

The core spacing of the bundle can be found using:

coreSpacing = pybundle.get_core_spacing(img)





This can then be used to define a custom edge filter using:

filter = pybundle.edge_filter(img,  edgeLocation, edgeSlope)





This defines a Fourier domain filter with a cosine smoothed cut-off at the
spatial frequency corresponding to the spatial distance edgeLocation.
edgeSlope defines the smoothness of the cut-off; a value of 0 gives a
rectangular function. img merely needs to be a numpy array the same size
as the image(s) to be filtered. edgeLocation should typically be
1.6 * coreSpacing, and edgeSlope is not critical, but a value of
0.1 * coreSpacing generally works well. To apply the filter use:

smoothedImg = pybundle.filter_image(img, filter)





Note that this kind of filtering is currently quite slow.

To perform linear interpolation using the low-level functions, first perform a
calibration using the calibration image calibImg, a 2D numpy array:

coreSize = 3
gridSize = 512
calib = pybundle.calib_tri_interp(calibImg, coreSize, gridSize,
                                 normalise = calibImg, automask = True)





Here we have specified coreSize = 3 which is the approximate core spacing
in the image. This assists the calibration routine in finding all cores. If
this is unknown it can be estimate using find_core_spacing().

The gridSize is the number of pixels in each dimensions of the
reconstructed image, which is square.

Finally, we have specified to use the calibImg for normalisation. This
means that the intensity extracted from each core during imaging will be
normalised with respect to the intensity from the calibration image,
removing effects due to non-uniform cores. If this is not done (i.e. normalise
is left as the default None) then images may appear grainy.

To reconstruct an image img, a 2D numpy array, we then call:

imgRecon = pybundle.recon_tri_interp(img, calib)





This returns a 2D/3D numpy array of size (gridSize, gridSize, colour channels)
containing the image with the core pattern removed.

For all optional parameters refer to the function reference
for calib_tri_interp and recon_tri_interp.




            

          

      

      

    

  

    
      
          
            
  
Function Reference

A list of lower-level functions is available below, see the documentation for individual
classes for class methods.

The PyBundle class implements most of the functionality of the package and is the preferred approach for most applications except for Mosaicing, which is handled
by the Mosaic class.

PyFibreBundle uses numpy arrays as images throughout, wherever ‘image’ is specified this refers to a 2D (monochrome) or 3D (colour) numpy array. For colour images, the colour channels are along the third axis. There can be as many colour channels as needed.


Classes


	
PyBundle()

	



Provides object-oriented access to core functionality of PyFibreBundle.
See PyBundle class for details.


	
Mosaic()

	



Provides object-oriented access to mosaicing functionality of PyFibreBundle.
See Mosaic class for details.


	
SuperRes()

	



Functions for super-resolution. Normally these should be accessed using the
PyBundle class. See Super Resolution Section for details.


	
BundleCalibration()

	



Stores a calibration for triangular linear interpolation, both normal and
super-resolution.



Low-Level Functions for Bundle finding, cropping, masking


	
pybundle.auto_mask(img, loc=None, **kwargs)

	Locates bundle and sets pixels outside to 0 .


	Parameters:

	img – input image as 2D numpy array



	Keyword Arguments:

	
	loc – optional location of bundle as tuple of (centreX, centreY, radius),
defaults to determining this using find_bundle


	radius – optional, int, radius of mask to use rather than the automatically
determined radius


	Others – if loc is not specified, other optional keyword arguments will
be passed to find_bundle.













	
pybundle.auto_mask_crop(img, loc=None, **kwargs)

	Locates bundle, sets pixels outside to 0, and returns cropped image
around bundle.


	Parameters:

	img – input image as 2D numpy array



	Keyword Arguments:

	
	loc – optional location of bundle as tuple of (centreX, centreY, radius),
defaults to determining this using find_bundle


	Others – if loc is not specified, other optional keyword arguments will
be passed to find_bundle.













	
pybundle.apply_mask(img, mask)

	Sets all pixels outside bundle to 0 using a pre-defined mask. If the
image is 3D, the mask will be applied to each colour plane.


	Parameters:

	
	img – input image as 2D numpy array


	mask – mask as 2D numy array with same dimensions as img,
with areas to be kept as 1 and areas to be masked as 0.













	
pybundle.crop_rect(img, loc)

	Extracts a square around the bundle using specified co-ordinates. If the
rectange is larger than the image then the returned image will be a rectangle,
limited by the extent of the image.

Returns tuple of (cropped image as 2D numpy array, new location tuple)


	Parameters:

	
	img – input image as 2D numpy array


	loc – location to crop, specified as bundle location tuple of
(centreX, centreY, radius)













	
pybundle.find_bundle(img, **kwargs)

	Locate fibre bundle by thresholding and searching for largest
connected region.

Returns tuple of (centreX, centreY, radius).


	Parameters:

	img – input image of fibre bundle, 2D numpy array



	Keyword Arguments:

	filterSize – sigma of Gaussian filter applied to remove core pattern,
defaults to 4










	
pybundle.find_core_spacing(img)

	Estimates fibre bundle core spacing using peak in 2D Fourier transform.

If the image is not square, a square will be cropped from the centre.
It is therefore usually best to crop the image to the bundle
before passing it to this function.

Returns core spacing as float.


	Parameters:

	img – input image showing bundle as 2D/3D numpy array










	
pybundle.get_mask(img, loc)

	Returns a circular mask, 1 inside bundle, 0 outside bundle, using specified
bundle co-ordinates. Mask image has same dimensions as first two
dimensions of input image (i.e. does not return a mask for each colour plane).

Returns mask as 2D numpy array.


	Parameters:

	
	img – img used to determine size of mask, 2D numpy array


	loc – location of bundle used to determine location of mask,
tuple of (centreX, centreY, radius)














Low Level Functions for Spatial Filtering


	
pybundle.g_filter(img, filterSize, kernelSize=None)

	Applies 2D Gaussian filter to image. By default
the kernel size is 4 times the filter_size (sigma).

Returns filtered image as numpy array.


	Parameters:

	
	img – input image as 2D/3D numpy array


	filterSize – float, sigma of Gaussian filter






	Keyword Arguments:

	kernelSize – int, size of convolution kernal










	
pybundle.crop_filter_mask(img, loc, mask, filterSize, resize=False, **kwargs)

	For convenient quick processing of images. Sequentially crops image to
bundle, applies Gaussian filter and then sets pixels outside bundle to 0.
Set loc to None to automatically locate bundle. Optional parameter ‘resize’
allows the output images to be rescaled. If using auto-locate, can
optionally specify find_bundle() options as additional keyword arguments.

Returns output image as 2D/3D numpy array


	Parameters:

	
	img – input image, 2D/3D numpy array


	loc – location of bundle as tuple of (centreX, centreY, radius),
set to None to determining this using find_bundle


	mask – 2D numpy array with value of 1 inside bundle and 0 outside bundle


	filterSize – sigma of Gaussian filter






	Keyword Arguments:

	
	resize – size to rescale output image to, default is no resize


	Others – if loc is not specified, other optional keyword arguments will
be passed to find_bundle.













	
pybundle.edge_filter(imgSize, edgePos, skinThickness)

	Creates a 2D edge filter with cosine smoothing.

Returns the filter in spatial frequency domain filter as a 2D numpy array.


	Parameters:

	
	imgSize – size of (square) images which will be processed, and
size of filter output


	edgePos – spatial frequency of cut-off


	skinThickness – slope of edge, the distance, in spatial frequency, over
which it goes from 90% to 10%













	
pybundle.filter_image(img, filt)

	Applies a Fourier domain filter to an image, such as created by
edge_filter(). Filter must be same size as image (x and y) but not
multi-channel (i.e. a 2D array).

Returns filtered image as 2D/3D numpy array.


	Parameters:

	
	img – input image (spatial domain), 2D/3D numpy array


	filt – spatial frequency domain representation of filter, 2D numpy array













	
pybundle.median_filter(img, filterSize)

	Applies 2D median filter to an image.

Returns the filtered image as a 2D numpy array.


	Parameters:

	
	img – input image as 2D/3D numpy array


	filterSize – float, sigma of Gaussian filter














Functions for Triangular Linear Interpolation


High-level functions


	
pybundle.calib_tri_interp(img, coreSize, gridSize, **kwargs)

	Performs calibration to allow subsequent core removal by triangular linear interpolation.
Reconstructed images will be of size (gridSize, gridSize). ‘coreSize’ is used by
the core finding routine, and should be an estimate of the core spacing. This function
returns the entire calibration as an instance of BundleCalibration which can subsequently by used
by recon_tri_interp. If background and/or normalisation images are specified, subsequent
reconstructions will have background subtraction and/or normalisation respectively.

Returns an instance of BundleCalibration

Thanks to Cheng Yong Xin, Joseph, who collaborated in implementation of this function.


	Parameters:

	
	img – calibration image of bundle as 2D (mono) or 3D (colour) numpy array


	coreSize – float, estimate of average spacing between cores


	gridSize – int, output size of image, supply a single value, image will be square






	Keyword Arguments:

	
	centreX – int, optional, x centre location of bundle, if not specified will be determined automatically


	centreY – int, optional, y centre location of bundle, if not specified will be determined automatically


	radius – int, optional, radius of bundle, if not specified will be determined automatically


	filterSize – float, optional, sigma of Gaussian filter applied, defaults to  0 (no filter)


	background – optional, image used for background subtraction as 2D numpy array


	normalise – optional, image used for normalisation, as 2D numpy array. Can be same as
calibration image, defaults to no normalisation


	autoMask – optional, boolean, if True the calibration image will be masked to prevent
spurious core detections outside of bundle, defualts to True


	mask – optional, boolean, when reconstructing output image will be masked outside of
bundle, defaults to True


	whiteBalance – optional, boolean, if True then each colour channel is normalised individually, defaults to False.













	
pybundle.recon_tri_interp(img, calib, **kwargs)

	Removes core pattern using triangular linear interpolation. Requires an initial
calibration using calib_tri_interp.

Returns reconstructed image as 2D/3D numpy array.


	Parameters:

	
	img – raw image to be reconstructed as 2D (mono) or 3D (colour) numpy array


	calib – bundle calibration as instance of BundleCalibration






	Keyword Arguments:

	numba – optional, if true use JIT acceleration using Numba, default is False











Low-level functions


	
pybundle.find_cores(img, coreSpacing)

	Find cores in bundle image using regional maxima. Generally fast and
accurate.

Returns tuple of (x_pos, y_pos) where x_pos and y_pos are 1D numpy arrays.


	Parameters:

	
	img – 2D/3D numpy array


	coreSpacing – float, estimate of the separation between cores in
pixels.













	
pybundle.core_values(img, coreX, coreY, filterSize, **kwargs)

	Extract intensity of each core in fibre bundle image. First applies a
Gaussian filter unless filterSize is None. Supports JIT acceleration
if numba is installed.


	Parameters:

	
	coreX – 1D numpy array giving x co-ordinates of core centres


	coreY – 1D numpy array giving y co-ordinates of core centres


	filterSize – float, sigma of Gaussian filter






	Keyword Arguments:

	numba – optional, if true numba JIT used for faster execution, defaults to False.










	
pybundle.init_tri_interp(img, coreX, coreY, centreX, centreY, radius, gridSize, **kwargs)

	Used by calib_tri_interp to perform Delaunay triangulation of core positions,
and find each pixel of reconstruction grid in barycentric co-ordinates w.r.t.
enclosing triangle.

Returns instance of BundleCalibration.


	Parameters:

	
	img – calibration image as 2D (mono) or 3D (colour) numpy array


	coreX – x centre of each core as 1D numpy array


	coreY – y centre of each core as 1D numpy array


	centreX – x centre location of bundle (reconstruction will be centred on this)


	centreY – y centre location of bundle (reconstruction will be centred on this)


	radius – radius of bundle (reconstruction will cover a square out to this radius)






	Keyword Arguments:

	
	gridSize – output size of image, supply a single value, image will be square


	filterSize – optional, sigma of Gaussian filter applied, defaults to no filter


	background – optional, image used for background subtractionn as 2D numpy array


	normalise – optional, image used for normalisation, as 2D numpy array. Can be same as
calibration image, defaults to no normalisation


	mask – optional, boolean, when reconstructing output image will be masked outside
of bundle, defaults to True


	whiteBalance – optional, boolean, if True then each colour channel is normalised individually, defaults to False.















Utility Functions


	
pybundle.average_channels(img)

	Returns an image which is the the average pixel value across all channels of a colour image.
It is safe to pass a 2D array which will be returned unchanged.


	Parameters:

	img – image as 2D/3D numpy array










	
pybundle.extract_central(img, boxSize=None)

	Extract a central square from an image. The extracted square is centred
on the input image, with size 2 * boxSize if possible, otherwise the largest
square that can be extracted.

Returns cropped image as 2D numpy array.


	Parameters:

	img – input image as 2D numpy array



	Keyword Arguments:

	boxSize – size of cropping square, default is largest possible










	
pybundle.max_channels(img)

	Returns an image which is the the maximum pixel value across all channels of a colour image.
It is safe to pass a 2D array which will be returned unchanged.


	Parameters:

	img – image as 2D/3D numpy array










	
pybundle.radial_profile(img, centre)

	Produce angular averaged radial profile through image img centred on
centre, a tuple of (x_centre, y_centre)

Returns radial profile as 1D numpy array


	Parameters:

	
	img – input image as 2D numpy array


	centre – centre point for radial profile, tuple of (x,y)













	
pybundle.save_image8(img, filename)

	Saves image as 8 bit tif without scaling






	
pybundle.save_image8_scaled(img, filename)

	Saves image as 8 bit tif with scaling to use full dynamic range.


	Parameters:

	
	img – image as 2D/3D numpy array


	filname – str, path to file. Folder must exist.













	
pybundle.save_image16(img, filename)

	Saves image as 16 bit tif without scaling.


	Parameters:

	
	img – image as 2D/3D numpy array


	filname – str, path to file. Folder must exist.













	
pybundle.save_image16_scaled(img, filename)

	Saves image as 16 bit tif with scaling to use full dynamic range.


	Parameters:

	
	img – image as 2D/3D numpy array


	filname – str, path to file. Folder must exist.













	
pybundle.to8bit(img, **kwargs)

	
	Returns an 8 bit representation of image. If min and max are specified,
	these pixel values in the original image are mapped to 0 and 255
respectively, otherwise the smallest and largest values in the
whole image are mapped to 0 and 255, respectively.


	Arguments:
	img    : input image as 2D numpy array










	Keyword Arguments:

	
	minVal – optional, pixel value to scale to 0


	maxVal – optional, pixel value to scale to 255













	
pybundle.to16bit(img, **kwargs)

	Returns an 16 bit representation of image. If min and max are specified,
these pixel values in the original image are mapped to 0 and 2^16
respectively, otherwise the smallest and largest values in the
whole image are mapped to 0 and 2^16 - 1, respectively.


	Parameters:

	img – input image as 2D numpy array



	Keyword Arguments:

	
	minVal – optional, pixel value to scale to 0


	maxVal – optional, pixel value to scale to 2^16 - 1
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